2MathEBook

Trigonometrija

Kosinus i sinus proizvoljnog ugla 2Ebook

Kosinus i sinus proizvoljnog ugla


Za definiciju kosinusa i sinusa proizvoljnog ugla koristićemo trigonometrijski krug.

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your ivbrowser (Click here to install Java now)


Neka je $\alpha=\angle(OA,OM)$ proizvoljan orijentisan ugao kojem odgovara orijentisani luk $AM$.

Ako su $(x_0, y_0)$ koordinate tačke $M$, kosinus i sinus ugla $\alpha$ definišu se kao:

$cos$$\alpha$$=x_0$,

$sin$$\alpha$$=y_0$.


Iz ove definicije sledi da kosinus i sinus ugla mogu biti i pozitivni i negativni i nula.


  • $cos$$\alpha$ je pozitivan ako je $\alpha$ u $I$ i $IV$ kvadrantu, a negativan ako je $\alpha$ u $II$ i $III$ kvadrantu.

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your ivbrowser (Click here to install Java now)


  • $sin$$\alpha$ je pozitivan ako je $\alpha$ u $I$ i $II$ kvadrantu, a negativan ako je $\alpha$ u $III$ i $IV$ kvadrantu.

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your ivbrowser (Click here to install Java now)


Napomena:
Ako je $0<$$\alpha$$<$$\frac{\pi}{2}$ onda je $cos$$\alpha$$=|OM_1|$, a $sin$$\alpha$$=|MM_1|$.

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your ivbrowser (Click here to install Java now)


Iz proizvoljnog trougla $OMM_1$ prema ranijoj definiciji je:

$cos$$\alpha$$=\frac{|OM_1|}{|OM|}$, $sin$$\alpha$$=\frac{|MM_1|}{|OM|}$.

Kako je $|OM|=1$ sledi:

$cos$$\alpha$$=|OM_1|$, $sin$$\alpha$$=|MM_1|$.



Primer:
Nađi $cos$$\alpha$ i $sin$$\alpha$ ako je: $a)$ $\alpha$$=0$, $b)$ $\alpha=\frac{\pi}{2}$, $c)$ $\alpha=\pi$, $d)$ $\alpha=\frac{3\pi}{2}$.
Rešenje:
$a)$ Tačka $M$ se poklapa sa tačkom $A(1,0)$, pa je $cos0=1$ i $sin0=0$.
$b)$ Tačka $M$ se poklapa sa tačkom $B(0,1)$, pa je $cos\frac{\pi}{2}=0$ i $sin\frac{\pi}{2}=1$.
$c)$ Tačka $M$ se poklapa sa tačkom $A'(-1,0)$, pa je $cos\pi=-1$ i $sin\pi=0$.
$d)$ Tačka $M$ se poklapa sa tačkom $B'(0,-1)$, pa je $cos\frac{3\pi}{2}=0$ i $sin\frac{3\pi}{2}=-1$.

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your ivbrowser (Click here to install Java now)





Copyright © Matf