Processing math: 0%

Izvod funkcije
Pravila diferenciranja

Izvod funkcije

Odredimo izvod f(x)=\ln{x} u proizvoljnoj x_{0}>0:
Posmatrajmo g(x_{0}): g(x_{0}, \Delta x)=\frac {\Delta f(x_{0})}{\Delta x}=\frac{\ln{(x_{0}+\Delta x)}-\ln{x_{0}}}{\Delta x }, f u x_{0}:


This is a Java Applet created using GeoGebra from www.geogebra.org - it looks like you don't have Java installed, please go to www.java.com

f'(x_{0})=\lim_{\Delta x\rightarrow 0}g(x_{0}, \Delta x)= =\lim_{\Delta x\rightarrow 0}\frac {\Delta f(x_{0})}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{\ln{(x_{0}+\Delta x)}-\ln{(x_{0})}}{\Delta x }= =\lim_{\Delta x\rightarrow 0}\frac {\ln(1+\frac{\Delta x}{x})}{\frac{\Delta x}{x}}\cdot \frac{1}{x}=\frac{1}{x}, jer je \lim_{t \rightarrow 0}\frac{ln(1+t)}{t}=1.