Kompleksni brojevi

Operacije


Sabaranje i oduzimanje

   Npr. primer koji smo već spominjali. Naći $z = z_1 + z_2 -z_3 $ ukoliko su poznati kompleksni brojevi $z_1,z_2 $ i $z_3$. U sledećem apletu možete menjati vrednosti kompleksnih brojeva, a samim time uočiti promene retultata.

Ovo je Java Applet napravljen u GeoGebri sa www.geogebra.org - izgleda da nemate instaliranu Javu; molim otvorite www.java.com


Množenje

$z_1z_2 = {\rho}_1 ( cos {\varphi}_1 +i \cdot sin {\varphi}_1) \cdot {\rho}_2 ( cos {\varphi}_2 +i \cdot sin {\varphi}_2) = $

$ = {\rho}_1 \cdot {\rho}_2 ((cos {\varphi}_1cos {\varphi}_2 - sin {\varphi}_1sin {\varphi}_2 ) +i (sin {\varphi}_1cos {\varphi}_2 + cos {\varphi}_1 sin {\varphi}_1) )= $

$= {\rho}_1 \cdot {\rho}_2 ( cos ( {\varphi}_1 + {\varphi}_2) +i \cdot sin ( {\varphi}_1 + {\varphi}_2))$

Deljenje

$ \frac {z_1}{z_2} = \frac {{\rho}_1 ( cos {\varphi}_1 +i \cdot sin {\varphi}_1) } {{\rho}_2 ( cos {\varphi}_2 +i \cdot sin {\varphi}_2)} = \frac {{\rho}_1 ( cos {\varphi}_1 +i \cdot sin {\varphi}_1) } {{\rho}_2 ( cos {\varphi}_2 +i \cdot sin {\varphi}_2)} \cdot \frac { ( cos {\varphi}_2 - i \cdot sin {\varphi}_2 ) } { ( cos {\varphi}_2 - i \cdot sin {\varphi}_2 )} =$

$ = \frac { {\rho}_1 } { {\rho}_2 } \cdot [ cos ({ \varphi}_1 - {\varphi}_2 ) + i \cdot sin ( {\varphi}_1 - {\varphi}_2 ) ] $